Well-temperate phage: optimal bet-hedging against local environmental collapses
نویسندگان
چکیده
Upon infection of their bacterial hosts temperate phages must chose between lysogenic and lytic developmental strategies. Here we apply the game-theoretic bet-hedging strategy introduced by Kelly to derive the optimal lysogenic fraction of the total population of phages as a function of frequency and intensity of environmental downturns affecting the lytic subpopulation. "Well-temperate" phage from our title is characterized by the best long-term population growth rate. We show that it is realized when the lysogenization frequency is approximately equal to the probability of lytic population collapse. We further predict the existence of sharp boundaries in system's environmental, ecological, and biophysical parameters separating the regions where this temperate strategy is optimal from those dominated by purely virulent or dormant (purely lysogenic) strategies. We show that the virulent strategy works best for phages with large diversity of hosts, and access to multiple independent environments reachable by diffusion. Conversely, progressively more temperate or even dormant strategies are favored in the environments, that are subject to frequent and severe temporal downturns.
منابع مشابه
In silico Evolution of Lysis-Lysogeny Strategies Reproduces Observed Lysogeny Propensities in Temperate Bacteriophages
Bacteriophages are the most abundant organisms on the planet and both lytic and temperate phages play key roles as shapers of ecosystems and drivers of bacterial evolution. Temperate phages can choose between (i) lysis: exploiting their bacterial hosts by producing multiple phage particles and releasing them by lysing the host cell, and (ii) lysogeny: establishing a potentially mutually benefic...
متن کاملBet hedging in desert winter annual plants: optimal germination strategies in a variable environment.
In bet hedging, organisms sacrifice short-term success to reduce the long-term variance in success. Delayed germination is the classic example of bet hedging, in which a fraction of seeds remain dormant as a hedge against the risk of complete reproductive failure. Here, we investigate the adaptive nature of delayed germination as a bet hedging strategy using long-term demographic data on Sonora...
متن کاملBet Hedging against Demographic Fluctuations.
Biological organisms have to cope with stochastic variations in both the external environment and the internal population dynamics. Theoretical studies and laboratory experiments suggest that population diversification could be an effective bet-hedging strategy for adaptation to varying environments. Here we show that bet hedging can also be effective against demographic fluctuations that pose ...
متن کاملWhen unreliable cues are good enough.
In many species, nongenetic phenotypic variation helps mitigate risk associated with an uncertain environment. In some cases, developmental cues can be used to match phenotype to environment-a strategy known as predictive plasticity. When environmental conditions are entirely unpredictable, generating random phenotypic diversity may improve the long-term success of a lineage-a strategy known as...
متن کاملDelayed bet-hedging resilience strategies under environmental fluctuations.
Many biological populations, such as bacterial colonies, have developed through evolution a protection mechanism, called bet hedging, to increase their probability of survival under stressful environmental fluctuation. In this context, the concept of preadaptation refers to a common type of bet-hedging protection strategy in which a relatively small number of individuals in a population stochas...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 5 شماره
صفحات -
تاریخ انتشار 2015